
 

 

 

The ExaStoreTM File System: Overview  

WHITE PAPER 
F E B R U A R Y   2007 

Copyright 2007, Exanet Ltd.  



 

 
 

   
      2 

 

1.  Introduction 
The major key to the ExaStore architecture is its distributed and highly scaleable file 
system. The system provides an abstracted unified view to a collection of multiple, 
possibly heterogeneous, RAIDs. This unified view can be accessed through various 
Remote File Protocols. Internally the system manages files data and metadata in a 
fully distributed manner. ExaStore system is designed with the following major goals 
in mind: 

 Linear scalability 

 High Availability 

 Parallel access 

 Adaptive behavior 

 Automatic configuration 

2.  Modules 
The distributed file system consists of a collection of multiple instances of loosely 
coupled modules, each carrying its own functionally: the Front End service is 
responsible for the client communication, the File System Daemon (FSD) issues the 
client request and the Store Agent handles the RAID I/O. 

2.1 Front End 
The ExaStore Front End functions as a protocol converter, translating between 
client-side protocol requests and internal file system RPC requests. Dedicated, 
protocol-specific front ends are provided for NFS, CIFS, and AFP. 

2.2 FSD Service 
The FSD implements all the file system modules on a single process with internal, 
non-preemptive threads. Local inter-modules calls within the same FSD are 
handled as local procedure calls with minimal overhead. RPC encoding/decoding 
takes place only for remote calls. Non-preemptive threads simplify the 
synchronization considerably, and enhance the performance by reducing context 
switch overhead to a minimum. To take advantage of SMP architecture, multiple 
instances of FSD are created in each node, so that each one serves a different sub-
domain, and runs almost exclusively on a single CPU. As a result, there's almost no 
overhead on kernel context switching.  Figure 1 describes the FSD modules and 
how they interact with each other. 



 

 
 

   
      3 

Journaller

Front-end

Logger/ 
Relocator

Metadata

Mirror
Mapper

Mirror to peer

Store Agent

Map

Put/ G
et

Pu
t i

te
m

R
eq

/ R
ep

ly

Log

FSD Services

Mirror from peer

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The FSD services 

 

Logger – The logger performs two major tasks, managing the read/ write cache 
and data relocation.  The cache manages all current active data and meta-data. 
Newly written data resides on mirrored, UPS backed memory.  

Relocator – The Relocator is a  background relocation process that sends the 
written data to the RAID volumes. As read operations are also passed through the 
cache, synchronization overhead is minimal. The relocator applies coalescing 
algorithms to accelerate disk I/O. 

Mapper - The mapper serves as a pointer repository whose main purpose is to 
keep track of the location of data, which is distributed on all system volumes.   
Since all data and metadata accesses are indirect (that is, coordinated by the 
mapper), data relocation occurs transparently to the clients.  

Metadata Service  - The Metadata server is a plain repository for file metadata, 
such as ownership, permission, and size. 

Mirror – The Mirror, running on the peer node, maintains an image of the log of the 
peer Logger. 

Jornaller –The Journaller, activated when peer node is down (degraded mode) and 
on power failure. In degraded mode, when mirroring the log to a peer node is not 
availale, the Journaller maintains an image of the log on the Raid. On power failure, 
the Journaller dumps the log contents to local disk. 



 

 
 

   
      4 

2.3 Store Agent 
The store agent is responsible to read/write data from a RAID volume. The agent 
interface is low level (read/write at certain block) since all details of allocation and 
mappings are handled by the mapper in a higher level. Volumes are shared, and 
may be accessed by different nodes in different times as a result of takeover. The 
agent service runs always on the node that currently accesses the volume. 

2.4 All Together 
Figure 2 provides a general overview of the file system modules in a four-node 
system. The FSD services running on different nodes communicate using the 
internode communication (For more information, see the Exanet white paper 
Networking in ExaStore™). Figure 2 describes the FSD modules and how they 
interact with each other. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: File system modules in a four-node system 

Node 0
Front-end

FSD

Agent

Node 1
Front-end

FSD

Agent

Node 2
Front-end

FSD

Agent

Node 3
Front-end

FSD

Agent
mirror

mirror

get/ put get/ put

get/ put

get/ put



 

 
 

   
      5 

2.5 Data Flow 

2.5.1 Read Access 
When a client issues a data read request, it is first handled by the front end. 
The front end queries the metadata server for the attributes and validity of the 
object being accessed and, if successful, fetches the data from the read cache 
and responds to the client. If there is a cache miss, the cache uses the store 
agent to fetch the data from the RAID. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Read data flow 

2.5.2 Write access 
Data write requests are also handled by the front end, which similarly queries 
the metadata server before processing the request. A successful metadata 
query is followed by a write operation to the cache (with mirroring) After the 
write has been acknowledged, the relocator moves the object to a disk store 
agent, which then stores the data to the RAID. Having received its 
acknowledgement, the client is free to perform other operations. In the 
meantime, the data is stored to disk at a slower pace, a process that hides 
disk access latency from the client. 

Note that there are circumstances in which the data is not sent to the RAID. If, 
for example, a second write operation modifies the data object again before 
the results of the first write are moved to the RAID, the store agent knows to 
store the second, newer version of the object rather than the first. 

 

 

 

 



 

 
 

   
      6 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Write data flow 

 

2.6 Data placement 
The ExaStore System distributes data evenly across RAIDs. This even distribution 
improves the balance among system components, hence improving performance 
and resource utilization, which leads to better ROI and TCO. Uniform distribution 
can also accelerate backup and restore times substantially. Contrast this with 
traditional systems, in which some RAIDs may be assigned much more data than 
others. In such cases, the RAIDs with the most data become the bottleneck, 
delaying completion of backup and restore operations. Exanet’s balanced 
distribution, on the other hand, ensures that I/O load is distributed evenly and thus 
shortens the overall backup time. 

2.7 Journaling and Recovery 

2.7.1 Degraded Mode Operation 
When a node fails, all the services it carries are moved to a peer node. The 
data that has not yet relocated to the RAID is written sequentially to a journal 
on one of the RAID volumes, and operation can continue, journalled to a 
stable storage. In this way, newly written data is protected from another failure. 

When the failed node become available again, the two peer nodes 
synchronize and resume normal operation. 



 

 
 

   
      7 

2.7.2 UPS Power Failure 
When a node senses a power failure, it starts immediately to dump all the 
write cache content (Data and meta-data items that were modified by user 
request, and not reached the disk yet) to a local disk. 

The dump process is internal to the node, and does not depend on the 
availability of any external resources, in particular the interconnect, the FC 
fabric and the RAID are not needed when dumping. 

When power is restored, the node is restarted, to enable again all network and 
FC services, and the dump is restored from latest version, and mirrored in a 
peer node, so that normal operation mode can start. 

2.7.3 Summary  
The ExaStore system implements a distributed and highly scaleable File 
System. The system provides an abstracted unified view to a collection of 
multiple RAIDs (potentially of different flavors). This unified view can be 
accessed through various Remote File Protocols (NFS, CIFS, AFP). Internally 
the system manages files data and metadata in a fully distributed manner. 
Designed with high availability in mind, the file system is also highly scalable 
and massively parallel. The file system is adaptive and automatically re-
configurable. 


